On Discontinuous Galerkin Methods for Elliptic Problems with Discontinuous Coefficients
نویسندگان
چکیده
منابع مشابه
Local discontinuous Galerkin methods for elliptic problems
In this paper, we review the development of local discontinuous Galerkin methods for elliptic problems. We explain the derivation of these methods and present the corresponding error estimates; we also mention how to couple them with standard conforming finite element methods. Numerical examples are displayed which confirm the theoretical results and show that the coupling works very well. Copy...
متن کاملDiscontinuous Galerkin Multiscale Methods for Elliptic Problems
Discontinuous Galerkin Multiscale Methods for Elliptic Problems Daniel Elfverson In this paper a continuous Galerkin multiscale method (CGMM) and a discontinuous Galerkin multiscale method (DGMM) are proposed, both based on the variational multiscale method for solving partial differential equations numerically. The solution is decoupled into a coarse and a fine scale contribution, where the fi...
متن کاملDiscontinuous Galerkin Methods for Elliptic problems
We provide a common framework for the understanding, comparison, and analysis of several discontinuous Galerkin methods that have been proposed for the numerical treatment of elliptic problems. This class includes the recently introduced methods of Bassi and Rebay (together with the variants proposed by Brezzi, Manzini, Marini, Pietra and Russo), the local discontinuous Galerkin methods of Cock...
متن کاملAdaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients
Elliptic partial differential equations (PDEs) with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electro-magnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on th...
متن کاملOn 2D elliptic discontinuous Galerkin methods
We discuss the discretization using discontinuous Galerkin (DG) formulation of an elliptic Poisson problem. Two commonly used DG schemes are investigated: the original average flux proposed by Bassi and Rebay (J. Comput. Phys. 1997; 131:267) and the local discontinuous Galerkin (LDG) (SIAM J. Numer. Anal. 1998; 35:2440–2463) scheme. In this paper we expand on previous expositions (Discontinuous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Methods in Applied Mathematics
سال: 2003
ISSN: 1609-9389,1609-4840
DOI: 10.2478/cmam-2003-0007